A Helix Replacement Mechanism Directs Metavinculin Functions
نویسندگان
چکیده
Cells require distinct adhesion complexes to form contacts with their neighbors or the extracellular matrix, and vinculin links these complexes to the actin cytoskeleton. Metavinculin, an isoform of vinculin that harbors a unique 68-residue insert in its tail domain, has distinct actin bundling and oligomerization properties and plays essential roles in muscle development and homeostasis. Moreover, patients with sporadic or familial mutations in the metavinculin-specific insert invariably develop fatal cardiomyopathies. Here we report the high resolution crystal structure of the metavinculin tail domain, as well as the crystal structures of full-length human native metavinculin (1,134 residues) and of the full-length cardiomyopathy-associated DeltaLeu954 metavinculin deletion mutant. These structures reveal that an alpha-helix (H1') and extended coil of the metavinculin insert replace alpha-helix H1 and its preceding extended coil found in the N-terminal region of the vinculin tail domain to form a new five-helix bundle tail domain. Further, biochemical analyses demonstrate that this helix replacement directs the distinct actin bundling and oligomerization properties of metavinculin. Finally, the cardiomyopathy associated DeltaLeu954 and Arg975Trp metavinculin mutants reside on the replaced extended coil and the H1' alpha-helix, respectively. Thus, a helix replacement mechanism directs metavinculin's unique functions.
منابع مشابه
Metavinculin mutations alter actin interaction in dilated cardiomyopathy.
BACKGROUND Vinculin and its isoform metavinculin are protein components of intercalated discs, structures that anchor thin filaments and transmit contractile force between cardiac myocytes. We tested the hypothesis that heritable dysfunction of metavinculin may contribute to the pathogenesis of dilated cardiomyopathy (DCM). METHODS AND RESULTS We performed mutational analyses of the metavincu...
متن کاملComparative biochemical analysis suggests that vinculin and metavinculin cooperate in muscular adhesion sites.
Metavinculin, the muscle-specific splice variant of the cell adhesion protein vinculin, is characterized by a 68-amino acid insert within the C-terminal tail domain. The findings that mutations within this region correlate with hereditary idiopathic dilated cardiomyopathy in man suggest a specific contribution of metavinculin to the molecular architecture of muscular actin-membrane attachment s...
متن کاملPassive Non-Prehensile Manipulation of a Specific Object on Predictable Helix Path Based on Mechanical Intelligence
Object manipulation techniques in robotics can be categorized in two major groups including manipulation with and without grasp. The aim of this paper is to develop an object manipulation method where in addition to being grasp-less, the manipulation task is done in a passive approach. In this method, linear and angular positions of the object are changed and its manipulation path is controlled...
متن کاملBhlhb5 and Prdm8 Form a Repressor Complex Involved in Neuronal Circuit Assembly
Although transcription factors that repress gene expression play critical roles in nervous system development, their mechanism of action remains to be understood. Here, we report that the Olig-related transcription factor Bhlhb5 (also known as Bhlhe22) forms a repressor complex with the PR/SET domain protein, Prdm8. We find that Bhlhb5 binds to sequence-specific DNA elements and then recruits P...
متن کاملReduction in Cache Memory Power Consumption based on Replacement Quantity
Today power consumption is considered to be one of the important issues. Therefore, its reduction plays a considerable role in developing systems. Previous studies have shown that approximately 50% of total power consumption is used in cache memories. There is a direct relationship between power consumption and replacement quantity made in cache. The less the number of replacements is, the less...
متن کامل